鸡兔同笼教案集锦20篇
在教学工作者开展教学活动前,就有可能用到教案,借助教案可以有效提升自己的教学能力。那要怎么写好教案呢?下面是小编为大家整理的鸡兔同笼教案20篇,欢迎阅读与收藏。
鸡兔同笼教案1教学目标:
(一)知识技能
1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。
2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。
(二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。
(三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。
教学重点:
使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。
教学难点:
使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。
教学过程:
一、激趣导入 渗透方法
1、 出示绕口令
1只小鸡2条腿, 1只兔子4条腿;
2只小鸡( )条腿, 2只兔子( )条腿;
3只小鸡( )条腿, 3只兔子( )条腿。……
【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】
2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同
【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】
3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?
老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?
如果学生说出列表,老师先出示无序列表,再请学生帮忙修改
【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】
接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿
【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】
二、独立探究 解决问题
刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。
谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)
1、出示例题,读儿歌
菜市场里真热闹,鸡兔同笼喔喔叫。
数数头儿有8个,数数腿儿26。可知鸡兔各多少?
2、 指名说说已知条件和问题。
引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿
3、你们愿意自己尝试解答吗?
每个同学有2个选择
“做一做”的1、2题。
四、课堂总结:
师:通过今天的学习,你有哪些收获?
板书设计: 鸡兔同笼
化繁为简
列表法
假设法:1)假设都是鸡
2)假设都是兔
教学反思:人教版四年级下册,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不飞外问题要问他?你们看看是不是这样:看演示板书“假设法。”
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?
生:是什么样的假设法,让我们先睹为快!
师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?
生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。
生:鸡的只数为:35-12 = 23(只)。
师:还有别的做法吗?怎样解答?
生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数
鸡兔同笼教案4时间:20xx年12月3日
地点:大会议室
主备人:崔xx
参加人员:六年级全体数学教师
教研内容:“鸡兔同笼”问题
教学目标:
1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。
2.结合图解法理解假设的方法解决鸡兔同笼问题。
3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
教学重点:能用列表法和画图法解决相关的实际问题。
教学难点:结合图解法理解假设的'方法解决鸡兔同笼问题。
重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。
模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。
作业设计:有浅入深“鸡兔同笼”的基本题型多练。
组内教师讨论要点:
1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。
2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。
3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。
4、列方程解时要借助实例,体会设X的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为X的道理,方法是设出一部分,根据总数列出方程(易列难解)
活动总结:
全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。
鸡兔同笼教案5复习目标:
通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
复习重点:尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
复习难点:在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导
学法:自主探究
课前准备:多媒体。
教学过程:
一、定向导学:2分钟
1、板书课题
2、复习目标:
掌握用列表法、假设法或列方程的.方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、方法归类:8分
1、填空:
一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。
一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。
鸡兔共五只,腿有( )条。
2、谁记得解决这类问题的方法呢?
学生回答
3、了解抬脚法
笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,
有94只脚。鸡和兔各有几只?
古人的算法可以用下图表示:
头… 35 脚减半 35 下减上 35 上减下 23 …鸡
脚… 94 47 12 12 …兔
三、解决问题:10分
(1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?
(2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?
(3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )
分。
(4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?
四、小结检测:20分钟
1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?
2、检测:
a、问答:
(1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。
b、解决问题
(1)、全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?
(2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?
(3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)
(4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
鸡兔同笼教案6[教学目标]
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。
[教学重、难点]
通过列表举例、作图分析等方法,解决鸡与兔的数量问题。
[教学过程]
一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。
1、小组活动
2、交流方法
3、
二、做一做
独立完成做一做的做一做的例1及“做一做”、教材练习二十四“做一做”。运用列表法和画图法解决这两道题,然后交流订正。
【课堂小结】
通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。
【课后作业】
1.完成教材练习二十四的“阅读材料”。
2. 完成练习二十六的1—3题。
[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]
鸡兔同笼教案10鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:
一、关注每位孩子的成长是成功的前提
鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。
二、关注课堂的互动、生成是取得良好效果的基础
课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的.发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。
三、关注数学思想的传承是达成目标的保障
解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。
本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。
鸡兔同笼教案11一、教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。
3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
二、教材分析:
(一)设计意图:
通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的.方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
(二)设计思路:
遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
三、教学设计:
、提出问题
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”
问:这段话是什么意思?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。
(板书课题:鸡兔同笼问题)
、解决问题
师:说明为了研究方便,我们不妨先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)
师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1:画图法:(学生展示画图方法及步骤)
①先画8个头。
②每个头下画上两条腿。
数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。
③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。
每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。
2.列表法:
(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
鸡 8 7 6 5 4 3 2 1
兔 0 1 2 3 4 5 6 7
脚 16 18 20 22 24 26
鸡 8 7 6 5 4 3 2 1
兔 0 1 2 3 4 5 6 7
脚 16 18 20 22 24 26
学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。
鸡 8 6 4 3
兔 0 2 4 5
脚 16 20 24 26
鸡兔同笼教案12教学目标:
1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的`一般性。
3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。
教学重点:
尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
教学难点:
在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导
学法:自主探究
课前准备:
多媒体。
教学过程:
一、定向导学:2分钟
1、师:同学们,你们知道吗,大约在1500年前,我国古代的数学名著《孙子算经》中,记载着一道有趣的数学题:(课件出示,题略)你们知道这道题的意思吗?
生:……(课件演示)
师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。
2、学习目标:
掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、自主探究:8分钟
鸡兔同笼教案13学情分析:
鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。
教学目标:
1.知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。
2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。
3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:
尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。
教学难点:
理解用假设法解决“鸡兔同笼”问题的算理。
教学过程:
一、以史激趣,导入新课:
同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)
二、独立探索,构建新知:
(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?
你从这道题中,找到了什么数学信息?
(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)
这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)
谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)
能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)
有了猜测的依据,还有谁想继续猜?(……)
给老师一个机会,我猜鸡是1只,那兔有几只?(19只)
怎么知道我猜得对不对?(通过计算来验证)
(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的.猜测怎么样?(失败了)
虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)
现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。
鸡兔同笼教案14一、教学目标:
1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;
3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
二、教材分析
本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
三、学校及学生状况分析
五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。
四、教学设计
(一)创设情境
师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?
生:鸡兔同笼就是鸡兔在一个笼子里。
(媒体出示课本的情景图)
师:请你猜一猜,图中大约有几只兔子,几只鸡?
生1:我猜大约是7只,兔子5只鸡。
生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。
(二)探求新知
师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的'条件)
师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。
师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。
师:哪个小组说说你们的想法?
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
师:还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?
生1:列表可以帮助我们一一举例,从中找出需要的答案。
生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。
师:那么,这三种列表的方法有什么不同呢?
生3:我认为情境图)
师:同学们看这就是《孙子算经》中的鸡兔同笼问题。
这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?
生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)
师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。问鸡和兔各有几只?
师:从题中你发现了那些数学信息?
生:笼子里有鸡和兔共35只,脚一共有94只。
生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。
师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。
2.出示例一(课件示例一)
题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?
师:谁来读读这个问题。
谁能流利的读一遍?
请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?
生:读题
师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。
生:我想我能猜出来。一次猜不对,多猜几次就能猜对。
师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)
师:还有其他方法吗?
生:我想用方程法也能解决。(板书:方程法)
生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。
师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)
师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。
生:在小组内尝试各种方法。
师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。
生1:我们小组用列表法找到了答案,有3只鸡,5只兔。
师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样?
生:很麻烦。
师:是啊,那要花费很长时间。哪个小组还想汇报?
生:我们小组用方程法计算的。(生说计算过程,师板书过程。)
师:我们看这个方程列得是否正确?4X表示什么?2(8-X)表示的是什么?兔脚数+鸡脚数=什么?这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍?
生:说数量关系。(鸡脚数+兔脚数=26只脚)
师:根据这个数量关系你能想到另两个数量关系吗?
生:叙述另外两个数量关系。(26只脚-鸡脚数=兔脚数26只脚-兔脚数=鸡脚数)根据这两个数量关系你又能列出哪两个方程呢?
生:汇报师板书两方程。
师:除了可以设兔有X只,还可以怎样设?
生:还可以设鸡有X只。那兔就有(8-X)只。
师:对,那根据什么数量关系你又能列出怎样的方程呢?
生:汇报,根据鸡脚数+兔脚数=26只能列出方程2X+4(8-X)=26根据26只脚-鸡脚数=兔脚数能列出26-2X=4(8-X)根据26只脚-兔脚数=鸡脚数能列出26-4(8-X)=2X。
师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。
师:除了这两种方法,假设法有运用的吗?
生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)
生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)
师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。
师:这种方法都明白了吗?结合课件图画进行解释质疑。
师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚?
生:16只。
师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)
生:每只兔子少算2只脚。
师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。
师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢?你能参照前面的方法自己试着做一做吗?
生:试做。
师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。
生:练做。
师:谁来说说假设全是兔该怎么算?
生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)
师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)
生:每只鸡多算2只脚。
师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。
师:还有运用其他方法的.吗?
师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法?(三种)哪三种?(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗?
生汇报:列表法适合于数据小的问题,数据大了就不适用了。
方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐
师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。
三巩固练习
师:现在就请你来解决那道数据较大的问题你们能解决吗?
生:独立解答后全班交流。
师:哪位同学愿意说说你是怎么解决这个问题的?
生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)
师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)
师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。
师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗?
四全课总结
师:通过这节课的学习你有什么收获?
生:我学会用……方法解决“鸡兔同笼”问题。
师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。
板书设计:
鸡兔同笼
列表法
方程法假设法
解:设有兔X只,鸡就有2(8-X)只。全看作鸡
4X+2(8-X)=268×2=16(只)
2X+16=2626-16=10(只)
X=54-2=2(只)
8-5=3(只)10÷2=5(只)
答:有5只兔,3只鸡。8-5=3(只)
26-4X=2(8-X)全看作兔
26-2(8-X)=4X8×4=32(只)
2X+4(8-X)=2632-26=6(只)
26-2X=4(8-X)4-2=2(只)
26-4(8-X)=2X6÷2=3(只)
8-3=5(只)
鸡兔同笼教案16教学目标:
1、通过学习使学生初步认识“鸡兔同笼”的数学趣题,能尝试用多种策略解答数目比较小的此类题目。
2、通过学习使学生在不断的试误中,运用“列表举例” “假设法”“解方程法”等方法解决鸡兔同笼问题,逐步形成良好的数学意识,体验尝试法解决数学问题的思想和方法。
3、在学习我国传统的数学文化的过程中,了解与此有关的数学史,对学生进行数学文化的熏陶和感染。
教学重点:
让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。
教学难点:
理解假设法中各步的算理
教具准备:
课件
教学过程:
一、创设情境,揭示课题。
1、(出示图片)谈话:同学们屏幕上的两个动物你们认识吗?你能用数学语言描述一下这两个动物吗?
2、如果把它们放在一个笼子里只告诉你头的个数与脚的只数,你能猜出笼子里各有多少只吗?
告诉学生头的.个数和腿的条数让学生猜测笼子里面动物的只数,然后用电子笔移开笼子进行验证。
3、揭示课题并板书:鸡兔同笼
二、展示情境,尝试探究。
(一)出示情境,获取信息。
1、出示例1:笼子里有若干只鸡和兔,从上面数,有8个头,从下面数有26条腿,鸡和兔名有几只?
2、仔细读题,说说你了解了哪些信息?
(二)猜想验证
1、谈话:同学们,对于这道题,还能像刚才那样直接猜测吗?为了能把所有的猜测一一列出来,我为大家准备了一个表格(出示表格),与学生一起列出所有的可能。
3、怎样才能知道同学们的猜测对不对?
3、和同学们一起验证并完成表格最后一栏的填写,找出正确答案并圈起来。
4、小结:我们这种方法叫做列表法。
5、如果现在有更多的鸡和兔你们觉得用这种列表法还可以吗?为什么?
(三)尝试假设法
1、为了研究老师想请8位同学们配合老师。(请8位同学上台来扮演鸡和兔当老师下令所有的兔子抬起两条腿时,扮演兔子的同学把两只手举起来,计算地上腿的条数,与实际相差了多少条腿,相差的这些腿是谁的?)
2、引导学生把刚才的表演过程用画图的方法呈现出来。
3、引导学生把画图的过程用算式表示出来。
5、小结:刚才我们假设都是鸡或者是兔,把这种方法叫做假设法。
(四)列方程解
1、在解决鸡兔同笼问题时除了列表法和假设法,还有别的方法吗?
2、要用列方程必须找到等量关系式,请大家认真读题找出等量关系式。
3、引导学生列出方程。
4、板演解方程的过程。
三、巩固练习
1、解决《孙子算经》中的原题。
(1)学生理解题意。
(2)用自己最喜欢的方法解决。
(3)集体订正。
2、完成书中做一做。
(1)小组讨论题里的什么相当于鸡,什么相当于兔?
(2)用自己喜欢的方式解决。
(3)集体订正。
鸡兔同笼教案17的练习二十五的数学广角——《鸡兔同笼》。
教材分析:
“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:
1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:
理解掌握假设法,能运用假设法解决数学问题。
教学具准备:
表格
教学过程:
一、导入
师生谈话导入新知
(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)
二、探究新知
1、质疑:提问:
(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?
(2)鸡和兔相比:什么比什么多?多多少?
(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?
(4)尝试解决,交流想法;
(5)出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)
2、教学例1
(1)出示例题1。
师:请同学们读一读,和前面的题目一样吗?什么地方不一样?
请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)
(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)
(2)学生自由猜测。
师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。
(3)验证猜想。
(4)观察发现规律。
(5)总结概括:在数学中这种方法叫列表法。(板书)。
(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的`经验。)
质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?
3、探讨假设法:
a、假设全是兔。
1师以童话故事的形式引入全是兔的情境。
2集体探究,引导交流。
b、假设全是鸡。
1师再次继续童话故事引入全是鸡的情境。
2小组独立探究交流假设全是鸡的计算方法。
3指名小组展示并叙述计算过程。
4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。
(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)
三、练习巩固
出示练习题。
四、课后总结
(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)
板书
鸡兔同笼
1、列表法
2、假设法
鸡兔同笼教案19教学目标:
1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。
3、感受古代数学问题的趣味性,提高学习数学的兴趣。
教学重点:
理解掌握用不同的方法解决问题的不同思路和方法。
教学难点:
用不同的方法解决实际问题。
教具准备:
多媒体课件、学习单等。
教学过程:
一、创设情境、揭示课题
1、师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!请同学们带着你们的信心和热情跟老师一起有进数学广角。我们一起来学习一道我国古代非常有名的数学趣题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好?
二、合作探究、学习新知
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
1、师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2、列表法
(1)猜想
要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
(2)验证:
到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。
(像这样把我们的'猜测按一定的顺序列成表格,这种方法叫列表法)。观察这个表格,你找到答案了吗?答案是怎样的。
活动二:探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。
设全都是鸡,每只鸡有两只脚 2×8=16(条)8只鸡共长几条脚? 26-16=10(条)表示什么?所有兔子少的脚 4-2=2(条)2表示什么?每只兔子少的脚
10÷2=5(只)兔表示10条脚,每只鸡上添2只脚变成兔子,所以共有5只鸡变成了兔子,因此兔子有5只8-5=3(只)鸡表示总数减兔数等于鸡数
可能还有些同学有点迷糊,我们用画图法直观理解一下。
(1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
(2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
(3)最后剩下的3只就是鸡。
现在大家清楚了吗?在引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们
的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。这种方法好吗?给这种方法起个名字,叫什么好呢?假设法。
②:如果假设全是兔,你们会解吗?好这个方法就留给你们课后完成。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
发散思考、加深理解:
现在我们能用上面的方法解决古人流传下来的问题了吗? 出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只? 学生独立自主完成
小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结
师:通过今天的学习,你有哪些收获?
五、作业布置
课本106页练习二十四第一题
鸡兔同笼教案20一、古语鸡兔同笼题,揭示课题。
1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
生模仿古人读题,说说自己的理解。
2、揭示课题
二、自主探索,解决问题
1、简化鸡兔同笼。
笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
2、探究方法
(1)列表法
鸡876543210兔012345678
(2)画图假设
用圆圈来表示鸡兔的头。那么,不管鸡兔具体有几只,我们首先要画几个圆圈?
现在,我想请一位同学来说说看,接下来该怎么办了?
师根据学生的述说添画脚,并适时地提问、板书:
少了几只脚?
2只2只地添,得添几个这样的2只?
94-70=24
24÷2=12
35-12=23
小结:看来,画图确实挺形象、直观的,同学们也容易理解。
三、推广应用,形成技能
“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。比方说
我们的邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。
出示:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
师:请你们用今天这节课学到的方法来解决这道题。
四、全总课总结
今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的'同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。
本节亮点:
1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。
2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。
【鸡兔同笼教案】相关文章:
鸡兔同笼教案05-29
鸡兔同笼教案范文7篇10-22
鸡兔同笼教案范文6篇10-28
鸡兔同笼教案汇编九篇10-24
【推荐】鸡兔同笼教案4篇10-29
有关鸡兔同笼教案四篇04-04
【精华】鸡兔同笼教案4篇04-06
鸡兔同笼教案范文合集五篇04-24
鸡兔同笼教案范文汇总5篇05-09